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P, radiant flux; q, thermal flux; s, surface area; a, heat liberation coefficient; i, 
number of radiometer zone; Ti, temperature of i-th zone; To, temperature of surrounding 
medium; r and R, radii of inner and outer surfaces of radiometer; N, number of zones; U and 
E, thenno-emf of thermocouple during flux measurement and flux substitution; k, thermoelectric 
coefficient of thermocouple ; M, electrical power of substitute heater; B, entrance orifice 
half-angle; g, emissivity of cavity material; O, angular coordinate in spherical coordinate 
system; x = cos6, 8o, and Xo correspond to boundary of area irradiated by flux; Lm(x), 
Legendre polynomial of first sort and m-th order; Wm(xo) = fjiLm(x)dx; ~, thermal conductiv- 
ity coefficient of radiometer material; O ~ latitude at which curve T(8) passes through zero; 
6, cavity wall thickness; Q, thermal flux; ~ and n, relative and absolute error in flux mea- 
surement; C, proportionality coefficient; o, Stefan--Boltzmann constant. 
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CONDUCTIVITY OF NONUNIFORbl SYSTEMS 

G. N. Dul'nev and V. V. Novikov UDC 536.24 

Percolation theory and methods of generalized conduction theory are used to con- 
struct a model of a heterogeneous system and to determine the effective conduc- 
tivity. 

Statement of the Problem. We consider a very simple two-component heterogeneous system 
with random distribution of components, consisting of two kinds of identical isomeric parti- 
cles, occupying the entire system volume without voids (Fig. la). 

We need to find the effective conductivity A of the system (the thermal and electrical 
conductivity, the dielectric constant, the magnetic permeability, the diffusion, etc.) as a 
function of the conductivities A i and the volume concentrations m i of the i-th component 
when the latter do not interact, i.e., the quantity hi does not depend on the concentration 

m i �9 

The effective conductivity h of this system is determined from the equation 

<j> =--A<w>, (1) 

where (J > is the average flux over the volume V (heat, electricity, material, etc.) and 
(V~) is the average volume gradient of the potential due to the flux <j): 

'f <j> =--~- .  j(r)dV, <Vq~>= . v~(r)dV. .(2) 
v v 

Here for the local fluxes j(r) and the potential gradients v~(r) we have the equations 

i ( 0  = - -  A ( 0  V +  (r), 

d iv  j (r) ---- O, ( 3 )  

c u r l  V~ ~ (r)  = O. 
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A 

Fig. 1. Structure of the heterogeneous systems: a) mixture of two kinds of polyhe- 
drons: b) planar representation of an infinite cluster near the percolation thresh- 
old m m-> m c + 0 (the shaded area); c) isolated cluster for m m < mc. The letter A 
denotes fine "conducting" seams of dielectric [I0]. 

The expression for the average flux < j > and the potential gradient (?~ > in a two-com- 
ponent system, according to Eqs. (2) and (3), can be written in the form 

< J > = --mIAm( V~i > --m2Ad < vq)2 > , 

<V~> =mt<v~i> +"h<V~2), 
where 

(4) 

(5) 

(V~i~ l I I ! �9 V---t-. V~,(r)dV,;  ( V % >  = V 2  " V~2(r)dV2. 
V= V= 

Here Vz, V~, and V = Vz + V2 are the volumes of the first and second components and the en- 
tire system, respectively. Expressions (4) and (5), taking account of Eq. (i), can be re- 
written in the form 

N = ml~ l  + vrn2~2, N = A/Am,  v := A d / A  m, (6)  

miYi+"~2=l, <V~> =~ <V~>, (7) 

where A m is the conductivity of the first component and A d is the conductivity of the second 

component. 

It can be seen from Eqs. (6) and (7) that to determine N we need additional information 
since the two equations contain three unknowns N, ~z, $=. This information can be informa- 
tion on the structure (or the topology) of the heterogeneous system, which would allow us 
to close Eqs. (6) and (7). Usually the components are distributed either in an ordered fash- 
ion (the presence of a distant row) or randomly, in the model of the structures of the hetero- 
geneous system. The first method is self-evident and allows us to obtain very exact results 
even when we replace the actual random position of the components by an ordered system [i]. 
However, it does not describe the probabilities of forming continuous bridges of conducting 
components, distributed in the nonconducting components. In addition, the diversity in struc- 
ture leads to the appearance of a large number of formulas for N, which in certain situations 

gives rise to an indeterminacy in their choice. 

The determination of conductivity in heterogeneous systems with a random distribution 
of components in a rigorous formulation of the problem encounters insurmountable mathematical 
difficulties, and one must use difference approximation schemes. A review of methods of this 

type and their capabilities has been given in [2]. 

Neither the ordered nor the random models can explain the appearance of a discontinuity 
in conductivity in poorly conducting systems A d = 0 (d indicates dielectric), in which the 
good conducting components A m are randomly distributed (m indicates metal). It has been es- 
tablished that in the conductivity of the components A m # 0, Ad = 0 there is a discontinuity 
in the dependence of the effective conductivity A with a volume concentration of components 
mm = mc, which is designated the percolation threshold [3, 4]. 

The present paper puts forward a new model for a nonuniform two-component system which 
possesses the geometric clarity of the ordered models and simultaneously takes into account 
the probability of forming conducting bridges and accounts for the appearance of a discon- 
tinuity in the effective conductivity at the threshold value of concentration m m = m c. In the 
limiting cases this model converts to the various well-known models for ordered structures. 

Some Results of the Percolation Theory. Recently, in determining the properties of 
heterogeneous systems, methods of percolation theory have been used (percolation processes) 
[3, 4] in which it is reported that with a volume concentration of the conducting component 
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m m = mc, a conducting infinite cluster (IC) is created, represented schematically in the 
plane of Fig. lb. An expression for the effective conductivity of this medium, when the con- 

ductivity of the second component is A d = 0 and m c ~m m < 0.5 is represented in percolation 
theory in the form 

N=A(mm--mc) k, N = A / A ~  m c ~ m m < 0 , 5 -  ( 8 )  

To d e t e r m i n e  t h e  c o n s t a n t s  A a n d  k one  n e e d s  t o  know t h e  t o p o l o g y  o f  an  i n f i n i t e  c l u s t e r .  
The  t o p o l o g y  o f  a n  IC i s  d i s c u s s e d  i n  a n u m b e r  o f  r e f e r e n c e s  [ 5 - 1 0 ] ,  a n d  t h e  c o m p u t e r  m o d e l -  
i n g  o f  a r a n d o m  d i s t r i b u t i o n  o f  c o m p o n e n t s  i n  h e t e r o g e n e o u s  s y s t e m s  and a l s o  e x p e r i m e n t a l  
d a t a  h a s  shown t h a t  k = 1 . 8  • 0 . 2  a n d  m c = 0 . 1 5  • 0 . 0 3 .  

R e l a t i v e l y ,  t h e  v a l u e s  o f  A a r e  n o t  a s  d e f i n i t e .  F o r  e x a m p l e ,  i n  [ 3 ] ,  on  t h e  b a s i s  o f  
m o d e l  e x p e r i m e n t s  t o  d e t e r m i n e  t h e  e l e c t r i c a l  r e s i s t a n c e  o f  a c u b e  w i t h  c e l l s  o f  number  25 x 
25 • 25 ( t h e  c o n d u c t i v i t y  o f  e a c h  c e l l  was  a s s i g n e d  i n  a r a n d o m  f a s h i o n ,  and  Am # 0 and  A d = 
0 ,  r e s p e c t i v e l y )  t h e  r e s u l t  was  o b t a i n e d  t h a t  A = 1 . 6 ,  k = 1 . 6 .  

I t  was  shown i n  [ 1 0 ] ,  u s i n g  m o d e l  e x p e r i m e n t s  on a c o m p u t e r ,  t h a t  A = 1 a n d  k = 1 . 6 - 2 .  

I n  [ 5 ,  6]  a t t e m p t s  w e r e  made t o  g e n e r a l i z e  t h e  r e s u l t s  o f  t h e o r y  f o r  t h e  c a s e  when A d << 
A m b u t  A d # 0 w h i l e  m m v a r i e s  t h r o u g h o u t  t h e  w h o l e  r a n g e  o f  c o n c e n t r a t i o n s  0 ~ m  m < 1 .  
For this the entire range of concentrations m m = 0-I was divided into three sections, in each 
of which a relation for N was recommended. For example, if Vm~5 �9 i0-" then N is 

N = ~ ( 1 -  5mm)-t, ram<me, 
1,6 N =  1 .6 (mm--mc)  , mc<-~.'nrn<0.5. ( 9 )  

I f  m m > 0 . 5 ,  t h e n  i n  [ 6 ]  i t  was  r e c o m m e n d e d  t h a t  N b e  d e t e r m i n e d  u s i n g  a f o r m u l a  o b -  
t a i n e d  on  t h e " e f f i c i e n t  medium" m o d e l  i n  [ 1 1 ,  1 2 ] :  

�9 l /  N • [(3m, - -  1) -k (3m2 - -  1) v ~ / 4  Jr  [ (3ml--1)-k(3m2--1)  vm]2/16 -F V__m. ( 1 0 )  
2 

I f  3 �9 10 - 2  <~_ v m < 1 ,  t h e n  Eq.  ( 10 )  i s  r e c o m m e n d e d  f o r  t h e  e n t i r e  r a n g e  o f  c o n c e n t r a t i o n s .  

I n  o u r  o p i n i o n ,  t h e  u s e  o f  t h e  e f f i c i e n t  med ium m o d e l  a s  a b a s i s  f o r  g e n e r a l i z i n g  t h e  
r e s u l t s  o f  p e r c o l a t i o n  t h e o r y  and  e x p e r i m e n t a l  d a t a  on  t h e  e f f e c t i v e  c o n d u c t i v i t y  N f o r  v m < 
10 - 2  i s  f o r m a l  i n  n a t u r e .  T h e  e f f i c i e n t  medium m o d e l  d o e s  n o t  r e f l e c t  t h e  t o p o l o g y  o f  a n  IC 
and  d o e s  n o t  a c c o u n t  f o r  i t s  v a r i a t i o n  ( t h e  b r a n c h i n g  w i t h  v a r i a t i o n  o f  c o n c e n t r a t i o n  m m) .  
A d e f e c t  o f  t h e  c o r r e l a t i o n s  made i n  [ 5 ,  6]  i s  a l s o  t h a t  t h e r e  a r e  v a r i o u s  f o r m u l a s  f o r  e a c h  
r a n g e  o f  c o n c e n t r a t i o n  a n d  r a t i o  o f  c o m p o n e n t  c o n d u c t i v i t i e s ,  and  t h e  f o r m u l a s  s u g g e s t e d  a r e  
n o t  r e l a t e d  d i r e c t l y  w i t h  t h e  t o p o l o g y  o f  t h e  I C .  

H e t e r o s e n e o u s  S y s t e m  M o d e l .  I n  c o n s t r u c t i n g  a m o d e l  we s h a l l  s t a r t  f r o m  t h e  f o l l o w i n g  
e x p e r i m e n t a l l y  and  t h e o r e t i c a l l y  e s t a b l i s h e d  f a c t ,  t h a t  f o r  v m = 0 N d e p e n d s  on  mm a c c o r d i n g  
t o  Eq.  ( 8 ) .  I t  c a n  b e  shown t h a t ,  f o r  t h e  c a s e  Vm = O, t h e  v o l u m e  c o n c e n t r a t i o n  o f  t h e  c o n -  
d u c t i n g  c o m p o n e n t  b e l o n g i n g  t o  an  i n f i n i t e  c l u s t e r  i s  

tact= ram-- mc (ii) 
I -- m c 

Then, putting A = (I -- me) -I in Eq. (8), we obtain an expression for N with v m = 0 in 
the following form 

N= ( rnm--me ) ~ l ~ n ~ n > ~ m c .  (12) 
, 1 - - m e  , ' 

We h a v e  e s t a b l i s h e d  t h a t  t h e  d i s c r e p a n c y  b e t w e e n  t h e  v a l u e  c a l c u l a t e d  f r o m  Eq .  ( 1 2 )  and  
t h e  e x p e r i m e n t a l  a n d  t h e o r e t i c a l  d a t a  o f  p e r c o l a t i o n  t h e o r y  i s  l e s s  t h a n  20% f .or  k = 1 . 6 .  
Thus, we can assert that the conductivity of an IC with v m = 0 is 

m m _  me ~ l , s  
, l > m m ~ m  e . ( 1 3 )  A ~= -'~n I - - m ~  

We shall single out a macroscopic tube of size L within the volume of a heterogeneous 
system. Here L is the minimum distance in which the conductivity of the tube is equal to the 
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Fig. 2. Modeling of the structure of heterogeneous systems: a) the elementary 
cell of themodel; b) the equivalent scheme for combining the resistances of the 
elementary cell when there is "adiabatic" partition; c) model with interperme- 
able components; d) the Eucken-Odelevskii model. 

effective conductivity A of the nonuniform system, and in addition, the dimensions of the 
nonuniformities must be greater than the mean free path of the flux carrier (charge, energy, 
mass, etc.), i.e., thedimension L must not be less than the radius of correlation between 
the conducting particles. The resistance of the cube to current<j> flowing along the normal 
to one side, is 

R -  L , S - - L X  L. (14)  
AS 

The r e s i s t a n c e  o f  t h e  c o n d u c t i n g  IC ,  a s  f o l l o w s  f rom t h e  d e f i n i t i o n ,  must be  r e l a t e d  t o  
t h e  mean l e n g t h  LIC a l o n g  w h i c h  t h e  f l o w  p a s s e s  and t o  t h e  a v e r a g e  a r e a  SIC o f  t h e  c r o s s  s e c -  
t i o n  o f  t h e  IC b y  t h e  r e l a t i o n  

L~ (15) 
R I C -  A ~ I  C 

I f  v m = O, t h e n  t h e  cube  r e s i s t a n c e  i s  e q u a l  to  t h e  r e s i s t a n c e  o f  t h e  IC,  i . e . ,  R = RIC 
and  i t  f o l l o w s  f rom E q s .  (14)  and (15)  t h a t  

S ~  L 
A = A m S L ~  (16)  

We s h a l l  d e n o t e  t h e  complex  o f  unknown q u a n t i t i e s  SIC and  LIC a p p e a r i n g  i n  Eq. (16)  by 

L 
S~c =Stc LIc 

and represent Eq. (16) in the form 
S �9 

- - ~ c  ( 1 7 )  A=AmSi, S i =  S 
By c o m p a r i n g  Eqs .  (13)  and ( 1 7 ) ,  we o b t a i n  a l aw f o r  t h e  v a r i a t i o n  o f  t h e  e f f e c t i v e  

�9 ~e 
c r o s s  s e c t i o n  SIC o f  t h e  c o n d u c t i n g  IC 

(Om  oi~ = , (i8) 
1 - -  m c 

wh ich  t a k e s  i n t o  a c c o u n t  t h e  mos t  i m p o r t a n t  f e a t u r e s  o f  t h i s  p a r a m e t e r .  

We s h a l l  c o n s t r u c t  a mode l  o f  t h e  h e t e r o g e n e o u s  s y s t e m  s t r u c t u r e ,  i n  wh ich  t h e  f o l l o w i n g  
s p e c i a l  f e a t u r e s  mus t  be  r e f l e c t e d :  t r a n s i t i o n  of  an  IC t o  an i s o l a t e d  c l u s t e r  ( I s C )  f o r  m m 
mc; and t h e  v a r i a t i o n  i n  t h e  c r o s s  s e c t i o n  o f  t h e  c o n d u c t i n g  IC a c c o r d i n g  to  Eq. ( 1 8 ) .  

To do t h i s  we r e p r e s e n t  t h e  t o p o l o g y  o f  t h e  IC i n  a cube  w i t h  s i d e  L i n  t h e  form o f  a 
t h r e e - d i m e n s i o n a l  f i g u r e  shown i n  F i g .  2 a .  He re  t h e  i s o l a t e d  c l u s t e r s  ( I s C )  a r e  i n d i v i d u a l  
i n c l u s i o n s  o f  c u b i c  s h a p e  w i t h  s i d e  12 and vo lume  c o n c e n t r a t i o n  ( / a / L )  3 = mc, a r e  l o c a t e d  a t  
d i s t a n c e s  l a  a p a r t ,  and  j o i n e d  by  c o n d u c t i n g  l i n k s  whose c r o s s  s e c t i o n  i s  $1 = l ~ .  
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s~  - -  ,-i--l__. ' 

Here it is assumed that 

We now divide the cube with infinitely thin "adiabatic" planes parallel to the flow, 
and write* the average flux <j>, passing through the cube (Fig. 2) along the normal 
to one of the sides (Fig. 2a), in the form 

< j > =S~ < j~ ) + A--S < j=  > q-2Ss < j[~ > q-g~ < J2 >. (19) 

In Eq. (19) <h> is the flux passing only through the first component (IC) with conduc- 
tivity Am; <-j~ > is the flux passing sequentially through the second component (in the length 
L -- ~2) and the first component in the cube length l=; and (]~2> is the flux passing sequen- 
tially through the second component (in the length L -- ~) and the first component in the 
cube length 11; and <J2> is the flux passing only through the second component. The trans- 
verse sections of the individual parts of the cube are 

, L ~ , & : 1 - -  g ~ - -  2 ~ .  

AS 

The value ~ we find from 

I 

A-g=o, T~--~,, tf g~<st.  
Eq. (18) : 

m m - m e  't ~ li S--i = Si 
= , 1- - :mc- - /  , 7, : - ~ - ,  ~ -  �9 (20) 

The equivalent scheme for combining the resistances to the passing flpx<]> of individu- 
al sections of the cube is shown in Fig. 2b, where the resistances R i have the following 
structure: 

L l--(l--vm)72 
R t - -  L S l l '  R z ~ R a -  , (21) 

SAm SAm AS ~'m 

L l--(1--~m) h L 
R ~ §  - , R ~ = - - 5 7 ' .  

SA m S~  m SAd 

The total cube resistance is 

R - t  = RF 1 -~ (Rz -~ Rs) - i  -~ 2 (R~-]-" Rs) - i  -~ R ?  i �9 (22) 

Taking  i n t o  a c c o u n t  t h a t  R may be w r i t t e n  i n t h e  form of  Eqs. (14) and ( 2 2 ) ,  and u s i n g  t h e  
resistance values from Eq. (21), we obtain an expression for the effective conduction of the 
heterogeneous system 

[ ] AS $3 -- 
N = S l - t - V m  l__(l__~r + 2  l__(l__vm)Tt + S ~  . (23) 

form 

We shall consider special cases of Eq. (23). 

a) If AS = 0, i.e., S= = $I (this condition holds for m m > 0.5), then Eq. (23) takes the 

$3 ~ S--~. (24) N=Si+ 2~m I--(I--%#~ 

We choose the notation C = ll/L and substitute the values Si, and then Eq. (24) takes 
the form of the Dul'nev formula, which is valid for a model with interpermeable components, 
whose beams have the same thickness (Fig. 2c) [i]: 

N =  C~nt-2~'rn ( 1 - - C ) C  ..t_,vm(l__C)~. (25) 
l 'C+'VmC 

b) If $I = 0, i.e., mm~ mc, then $3 = 0 and the model (Fig. 2a) converts to the Eucken-- 
Odelevskii model with isolated subdivisions (Fig. 2d). For the range of concentrations mm~ 
me 

*The justification for the method of "adiabatic subdivision" is given in [i]. 
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- - -  

= 

and the expression for A, according to Eq. (23), takes the form 

T 2 
N =  mm .......... _1 + l__mm'5-  . (26) 

1 - -  (1--  3 ~  m ~ 

Thus ,  f a r  c o n c e n t r a t i o n s  m m ~ 0 . 5 ,  Eq. (23)  c o n v e r t s  t o  Eq. (25)  f o r  a model  w i t h  i n t e r -  
permeable components, and for mm~mc, it converts to Eq. (26) for a model with isolated in- 
clusions. If it is known that the material consists of continuous fibers or is a system with 
closed inclusions, then one can at once use Eqs. (25) and (26), respectively, for analysis 
over the entire range of concentration variation. 

Comparison of Calculated Results with Experimental Data. Comparison of the calculated 
N from Eq. (23) with experimental data shows that the error-in computation is comparable with 
the measurement error: if ~m < 5 �9 10 -4 , then m c = 0.16 • 0.i; if v m ~5 �9 i0 -~, then m c = 
0.09. 

The variation in the model parameter m c with increase of ~m results from the fact that 
if ~m is small but not equal to zero (~m > 5 i0-~), then when IC undergoes transition to 
IsC(m m* mc) thin layers of dielectric are formed between the conducting isolated clusters 
(CIsC),and their conductivity in these conditions is comparable with that of the CIsC itself 
[i0] (see Fig. ic). The presence of "conducting" thin dielectric layers between IsC, leads to 
a shift in mc toward smaller mm, i.e., transition of conducting IC to IsC, between which con- 
ducting bonds are formed, and this occurs for mm < m c = 0.15 • 0.03. 

Figure 3 compares the calculated N using Eq. (23) with experimental data on the electri- 
cal conductivity of sintered copper powder with addition of alumina and sintered iron powder 
with addition of alumina [13]. The ratio of conductivity of the original components in these 
mixtures is Vm = O. The comparison between the calculated and experimental data is satis- 
factory. Figure 4 compares the theoretical N from Eq. (23) with the experimental data on 
electrical conductivity of tungsten bronze NaxW03 at T = 300~ [5, 6]. The ratio of conduc- 
tivities in this system is ~m = i0-~. Figure 4 also shows data of model experiments on elec- 
trical conductivity with ~m = i0-~ in the range mm = 0.3-0.5 [5, 6]. Comparison of the 
calculated N and the experimental data for ~m i0 -~ shows good agreement (error of 20%). 

Figure 4 also compares the calculated N and the experimental data on electrical conduc- 
tivity of a NH3--Li solution, in which the ratio of the component conductivities is Zm = 1.2 0 

i0 -~ [5, 6]. 

It should be noted that N as calculated from Eq. (23) with Um> i0-~ is close to N from 
the Dul'nev formula [i] over the entire range of concentrations. 

Recommended Formula for Calculating the Effective Conductivity of Heter0geneous Systems. 
As was pointed out, to close Eqs. (6) and (7) and determine the effective conductivity of 
heterogeneous systems A, one needs information on their structure. Analysis of the structures 
of heterogeneous systems shows that, in general, they can be divided into three basic types: 
I) structures with isolated impregnations; II) structures with interpermeating components; 
and III) structures where there is transition from structures with isolated impregnations to 
structures with interpermeating components, as the concentration varies. 

Heterogeneous systems with structures of type I and II have been described quite well in 
the literature using the Eucken-Odelevskii and the Fre--Dul'nev models [I, 12]. 

For type III structures the model constructed (Fig. 2a) and the formula obtained for 
the effective conductivity N, Eq. (23), are in good agreement with experimental data over a 
wide range of the parameters O<~-u m ~I and 0 ~mm~l. Here the geometric parameters of the 
model (Fig. 2a) were chosen from experimental and theoretical data of percolation theory. We 
note that the model proposed encompasses all three types of structures -- I-III. 

It should be noted that the more complete and reliable the information which is used on 
the structure of heterogeneous systems, in choosing geometric model parameters, the better is 
the agreement between the calculated and experimental data on the properties of heterogeneous 
systems. If the structure of a heterogeneous system is unknown, we can recommend the follow- 

ing investigative procedure. 
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Fig. 3. Theeffective electrical conductivity of sintered pow- 
ders with addition of alumina (v m = 0). The points are the 
experimental data of [13]: i) copper powder; 2) iron powder. 
The curve is the calculated value from Eq. (23). 

Fig. 4. The effective electrical conductivity of heterogene- 
nous systems with random structure. The points are the ex- 
perimental data of [5, 6]: I) tungsten bronze at T = 300~K 
(~m = 10-4); 2) data of model experiments ~(~m = i0-~); 
3) a solution NHs--Li (~m = 1.2 �9 10-3); 4) model experimental 
data (~m = 1.2 �9 10-3). The curves are calculations from Eq. 
(23): 5) with ~m = i0-~, mc = 0.17; 6) with ~m = 1.2 �9 10 -3 , 
m c = 0.09. 

With the chosen model -- I, II, or III- we solve the inverse problem, i.e., we compare 
the calculated values of N for different geometrical model parameters with a limited number 
of experimental data for N, and thus we can determine the structure of the given heterogene- 
ous system. For the chosen structure we subsequently determine the transfer coefficients 
analytically. 

NOTATION 

A, effective conductivity; mi, volume concentration of the i-th component; Ai, effective 
conductivity of the i-th component; <j>, mean flux of material; <v~>, mean potential gradi- 
ent; |(r) , local flux of material; V~(r), local potential gradient; mc, percolation threshold; 

~m = Ad/Am; N = A/A m . 
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